منابع مشابه
Pascal-Brianchon Sets in Pappian Projective Planes Pascal-Brianchon Sets in Pappian Projective Planes
It is well-known that Pascal and Brianchon theorems characterize conics in a Pappian projective plane. But, using these theorems and their modifications we shall show that the notion of a conic (or better a Pascal-Brianchon set) can be defined without any use of theory of projectivities or of polarities as usually.
متن کاملSpecial Point Sets in Finite Projective Planes
We consider the following three problems: 1. Let U be a q-subset of GF(q 2) with the properties 0; 1 2 U and u ? v is a square for all u; v 2 U. Does it follow that U consists of the elements of the subbeld GF(q)? Here q is odd. 2. Let f : GF(q) ! GF(q) be any function, and let be the set of diierence quotients (directions, slopes). What are the possibilities for jD f j? 3. Let B be a subset of...
متن کاملResolving Sets and Semi-Resolving Sets in Finite Projective Planes
In a graph Γ = (V,E) a vertex v is resolved by a vertex-set S = {v1, . . . , vn} if its (ordered) distance list with respect to S, (d(v, v1), . . . , d(v, vn)), is unique. A set A ⊂ V is resolved by S if all its elements are resolved by S. S is a resolving set in Γ if it resolves V . The metric dimension of Γ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving...
متن کاملBlocking sets of Rédei type in projective Hjelmslev planes
The aim of this paper is to generalize the notion of a Rédei type blocking set to projective Hjelmslev planes. In what follows, we focus on Hjelmslev planes over chain rings of nilpotencey index 2, i.e. chain rings with rad R 6= (0) and (rad R)2 = (0). Thus we have always |R| = q2, where R/ rad R ∼= Fq. Chain rings with this property have been classified in [1, 6]. If q = pr there are exactly r...
متن کاملNon-representability of finite projective planes by convex sets
We prove that there is no d such that all finite projective planes can be represented by convex sets in R, answering a question of Alon, Kalai, Matoušek, and Meshulam. Here, if P is a projective plane with lines l1, . . . , ln, a representation of P by convex sets in R is a collection of convex sets C1, . . . , Cn ⊆ R d such that Ci1 , Ci2 . . . , Cik have a common point if and only if the corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Designs
سال: 2016
ISSN: 1063-8539
DOI: 10.1002/jcd.21527